The interaction of HIV-1 Tat(32-72) with its target RNA: a fluorescence and nuclear magnetic resonance study.

نویسندگان

  • A U Metzger
  • P Bayer
  • D Willbold
  • S Hoffmann
  • R W Frank
  • R S Goody
  • P Rösch
چکیده

We performed intrinsic peptide fluorescence experiments to characterize the interaction between variants of the HIV-1 Tat(32-72) peptide BP1 and TAR RNA. Kd values for wild-type BP1 and cysteine-modified BP1 were found to be in the range of 60 to 70 nM for both peptides, indicating that free sulfhydryl groups of the cysteines within the peptide are not required for high affinity TAR binding. Thus, the mutant peptide BP1 (C34S, C37W) (BP1SW) was used to further investigate peptide RNA interaction by fluorescence studies. Titration of BP1SW with TAR resulted in a dissociation constant (Kd = 9 nM) nearly an order of magnitude lower than that of the wild-type peptide. The change of the BP1SW fluorescence intensity on TAR binding was used to investigate the kinetics of this interaction by stopped-flow experiments. The results can be explained in terms of a two-step binding model, with a rapid diffusion-limited initial formation of a tight, but unspecific peptide RNA complex, followed by a relatively slow structural rearrangement step (k approximately 60 s-1) in order to form the specific BP1SW-TAR complex. Comparison of heteronuclear two-dimensional NMR spectra of BP1SW and BP1SW bound to TAR shows that only resonances from amino acid residues of the core and basic sequence regions are shifted on TAR binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Cerebrospinal Fluid in Diagnosis of Bacterial Meningitis; Using Nuclear Magnetic Resonance Spectroscopy: A Systematic Review

Background: Analysis of biofluids provides a unique window into the biochemical status of a living organism since the composition of a given biofluid will be modulated according to the level of function of the cells that are intimately concerned with its manufacture and secretion. One of the most successful approaches to biofluid analysis has been the application of NMR spectroscopy. Objective...

متن کامل

Thermodynamic studies of a series of homologous HIV-1 TAR RNA ligands reveal that loose binders are stronger Tat competitors than tight ones

RNA is a major drug target, but the design of small molecules that modulate RNA function remains a great challenge. In this context, a series of structurally homologous 'polyamide amino acids' (PAA) was studied as HIV-1 trans-activating response (TAR) RNA ligands. An extensive thermodynamic study revealed the occurence of an enthalpy-entropy compensation phenomenon resulting in very close TAR a...

متن کامل

Equine infectious anemia virus transactivator is a homeodomain-type protein.

Lentiviral transactivator (Tat) proteins are essential for viral replication. Tat proteins of human immunodeficiency virus type 1 and bovine immunodeficiency virus form complexes with their respective RNA targets (Tat responsive element, TAR), and specific binding of the equine anemia virus (EIAV) Tat protein to a target TAR RNA is suggested by mutational analysis of the TAR RNA. Structural dat...

متن کامل

Native Top‐Down Mass Spectrometry of TAR RNA in Complexes with a Wild‐Type tat Peptide for Binding Site Mapping

Ribonucleic acids (RNA) frequently associate with proteins in many biological processes to form more or less stable complex structures. The characterization of RNA-protein complex structures and binding interfaces by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, or strategies based on chemical crosslinking, however, can be quite challenging. Herein, we have explored the ...

متن کامل

HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1-72) by NMR spectroscopy.

Tat (transactivator of transcription) is a small RNA-binding protein that plays a central role in the regulation of human immunodeficiency virus type 1 replication and in approaches to treating latently infected cells. Its interactions with a wide variety of both intracellular and extracellular molecules is well documented. A molecular understanding of the multitude of Tat activities requires a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 241 1  شماره 

صفحات  -

تاریخ انتشار 1997